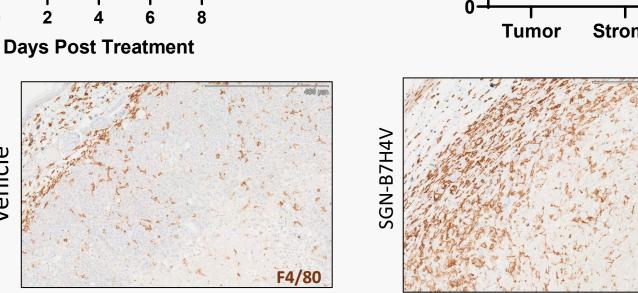

Poster No. 1281 SGN-B7H4V shows immunomodulatory activity through induction of immunogenic cell death

Elizabeth E. Gray¹, Michelle Ulrich¹, Angela Epp¹, Patrick Youman¹, Kelly Hensley¹, Sean Allred¹, Julie Hahn¹, Kristen Gahnberg¹, Piper M. Treuting¹, John Gosink¹, Bob Thurman¹, Alyson J. Smith¹, Jason Schrum¹, Natalya Nazarenko¹, and Shyra J. Gardai¹ ¹Seagen Inc., Bothell, WA.

Background

- SGN-B7H4V is a novel, investigational antibody drug conjugate (ADC) composed of a B7-H4-directed antibody (B7H41001 mAb) conjugated via a protease cleavable linker to the clinically validated vedotin payload [2-4].
- Previously, we have demonstrated that expression of the immune checkpoint ligand B7-H4 is elevated on a variety of solid tumors including breast, ovarian, and endometrial tumors [1,5,8].
- SGN-B7H4V is designed to bind and internalize the immune checkpoint ligand B7-H4/ADC complex from the surface of malignant cells and release the cytotoxic payload MMAE.
- SGN-B7H4V can induce tumor cell death through several mechanisms, including MMAE-mediated direct and bystander cytotoxicity as well as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) [8].
- Vedotin ADCs have been described to elicit antitumor immune responses in part through MMAE-mediated induction of immunogenic cell death (ICD). These immunomodulatory effects potentially position vedotin ADCs to uniquely combine with checkpoint inhibitors, supported by recent clinical activity observed when vedotin ADCs are paired with anti-PD1 agents [6,7].
- Here, we characterize SGN-B7H4V-mediated ICD and subsequent immunomodulatory activity. We also evaluate the contribution of SGN-B7H4V-induced immune activation to antitumor activity in combination with an anti-PD1 agent.

Proposed Mechanism of Action


References

- dy-drug conjugate for the treatment of breast cancer. Mol Pharm. 2015;12(6):1717-29.doi: 10.1021/mp500774
- Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-PD-1/PD-L1 Therapy. J Clin Oncol. 2019:37(29):2592-600. doi: 10.1200/JCO.19.0114 lopment of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30(7):631-7. doi: 10.1038/nbt.226 Tilly H., et al. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated DLBCL: an open-label, non-randomised, phase 1b-2 study, Lancet Oncol, 2019;20(7):998-1010, doi: 10.1016/S1470-
- 6. Advani, R.H., et al. Brentuximab vedotin in combination with nivolumab in relapsed or refractory Hodgkin lymphoma: 3-year study results. Blood. 2021 Aug 12;138(6):427-438. doi: 10.1182/blood.2020009178
- 7. Rosenberg, J.E. et al. Study EV-103: Preliminary durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma. J Clin Oncol. 2020; 38:6_suppl, 441-441 doi:10.1200/ico.2020.38.6 suppl.441.
- 8. Gray E., et al. SGN-B7H4V, a novel, investigational ADC directed to the T cell checkpoint ligand B7-H4, shows promising activity in preclinical models. J. for ImmunoTherapy of Cancer. 2021;9. doi: 10.1136/jitc-2021-SITC2021.854.
- Disclosures: All authors are employees of and/or hold stock in Seagen, Inc.

Poster No. 1281

American Association for Cancer Research (AACR) Annual Meeting; April 8-13, 2022

SGN-B7H4V Induces Hallmarks of ICD in Vitro SGN-B7H4V induces ATP release and calreticulin exposure × Mock **D** B7H41001 mAb 7 40000 Non-binding control ADC SGN-B7H4V 30000 MMAE 20000 Figure 1. SGN-B7H4V induces secretion of ATP as well as surface exposure of calreticulin. SGN-B7H4V and MMAE drove ATP release (A) as well as cell surface exposure of calreticulin (B) by SKBR3 cells 48 hours following treatment with 1 µg/mL SGN-B7H4V or non-binding control ADC or 100 nM MMAE free drug. SGN-B7H4V Demonstrates Immunomodulatory Activity in a TNBC Xenograft Tumor in Vivo **SGN-B7H4V** recruits macrophages to a xenograft tumor A _ 400 -× Vehicle → Vehicle - B7H41001 mAb SGN-B7H4V SGN-B7H4V 200reatment 20-5 Harvest tumors 2 4 6 8 Tumor Stroma

Figure 2. SGN-B7H4V recruits mouse macrophages to a triple-negative breast cancer (TNBC) xenograft tumor. MDA-MB-468 tumor-bearing NSG mice were treated with a single 3 mg/kg dose of SGN-B7H4V, unconjugated B7H41001 mAb, or vehicle control. Tumors were harvested 7 days post-treatment and processed for either RNAseq or immunohistochemistry (IHC) (A). IHC staining revealed an increase in F4/80+ macrophages at the tumor site following treatment with SGN-B7H4V (B, C).

SGN-B7H4V induces upregulation of cytokine and type I interferon response genes by human tumor cells

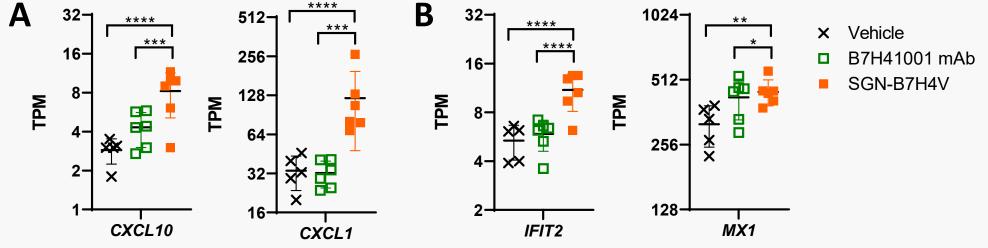


Figure 3. SGN-B7H4V induces upregulation of cytokines and type I interferon response genes by human tumors cells. RNAseq analysis of MDA-MB-468 tumors treated as in **Figure 2** revealed an increase in human transcripts encoding cytokines (A) and type I IFN response genes (B) in tumor cells following treatment with SGN-B7H4V compared to the vehicle control.

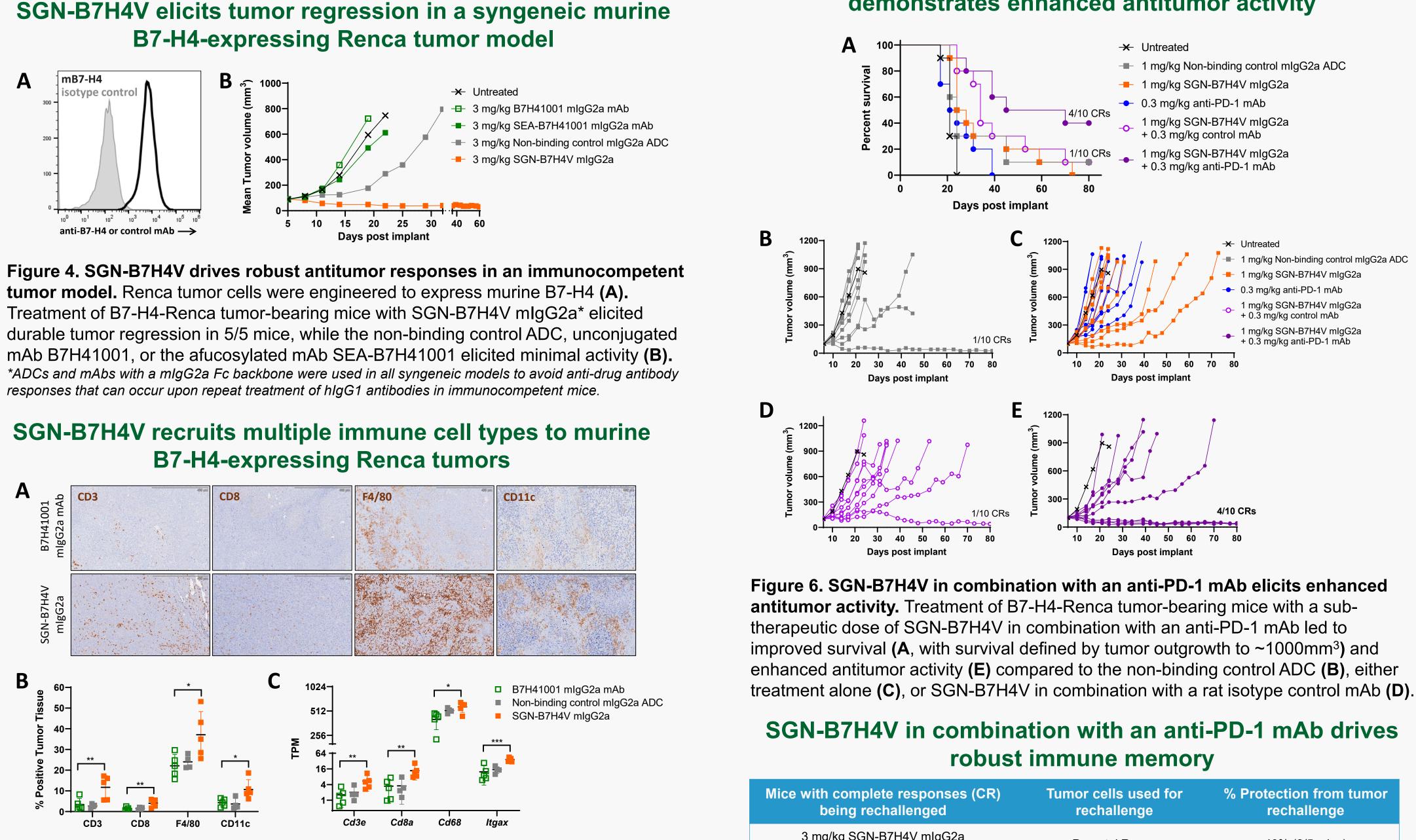


Figure 5. SGN-B7H4V elicits recruitment of T cells, macrophages, and dendritic cells to murine B7-H4-expressing Renca tumors. B7-H4-Renca tumor-bearing mice were treated with a single 3 mg/kg dose of naked B7H41001 mAb, SGN-B7H4V, or non-binding ADC. Tumors were harvested 7 days after treatment and processed for RNAseq or IHC. SGN-B7H4V treatment led to an increase in CD3/CD8+ T cells, F4/80+ macrophages, and CD11c+ antigen-presenting cells at the tumor site (A, B). A significant increase in Cd3e (encodes CD3e), Cd8a (encodes CD8a), Cd68 (encodes the macrophage marker CD68) and *Itgax* (encodes CD11c) transcripts was also observed following treatment with SGN-B7H4V (C)

SGN-B7H4V Drives Antitumor Activity in an

Immunocompetent Murine Tumor Model

- SGN-B7H4V induces hallmarks of immunogenic cell death in vitro, driven by the MMAE (vedotin) payload. • Moreover, SGN-B7H4V led to immune changes in the tumor microenvironment in vivo, including recruitment of macrophages and T cells to tumors, suggesting the potential to drive both innate and adaptive antitumor immunity.

Conclusions

- Finally, SGN-B7H4V drove robust antitumor activity in an immunocompetent tumor model as a monotherapy and shows combination activity with an anti-PD1 agent.
- Altogether, these data support the evaluation of SGN-B7H4V as a monotherapy in the ongoing Phase 1 Study of SGN-B7H4V in Advanced Solid Tumors (NCT05194072) and potential future clinical combinations with immunotherapies.

SGN-B7H4V Pairs Well With an Anti-PD-1 mAb

Combination of SGN-B7H4V with an anti-PD-1 mAb demonstrates enhanced antitumor activity

th complete responses (CR) being rechallenged	Tumor cells used for rechallenge	% Protection from tumor rechallenge
ng/kg SGN-B7H4V mIgG2a (Figure 4B)	Parental Renca	40% (2/5 mice)
g/kg SGN-B7H4V mIgG2a + 0.3 mg/kg anti-PD-1 mAb (Figure 6)	Parental Renca	100% (4/4 mice)

Figure 7. SGN-B7H4V in combination with an anti-PD-1 mAb elicits robust immune memory. All four mice from Figure 6 that achieved a CR after treatment with SGN-B7H4V in combination with an anti-PD-1 mAb were protected from rechallenge with parental Renca tumor cells compared to 40% of mice from Figure 4 that achieved a CR after treatment with SGN-B7H4V alone.

Copies of this poster obtained through this Quick Response (QR) Code are fo personal use only and may not reproduced without the permission of the authors. For more information, please contact MedInfo@seagen.com

