Tisotumab Vedotin Shows Immunomodulatory Activity Through Induction of Immunogenic Cell Death

Elizabeth E. Gray¹, Kelly Hensley¹, Sean Allred¹, Esther Trueblood¹, John Gosink¹, Robert Thurman¹, Kaleb Smith¹, Celine Jacquemont¹, Mark Bieda¹, Jason Gow¹, Jeffrey R. Harris², Lauren K. Brady², Ibrahima Soumaoro², Shweta Jain¹, Leonardo Nicacio¹, Shyra J. Gardai¹

BACKGROUND

- Tisotumab vedotin (TV) is an investigational antibody-drug conjugate composed of a tissue factor (TF)-directed human monoclonal antibody covalently linked to the microtubule-disrupting agent monomethyl auristatin E (MMAE) via a protease-cleavable linker.
- TV demonstrated single agent activity (24% objective response rate [ORR] and 8.3 month median duration of response [DOR]) in recurrent or metastatic cervical cancer previously treated with doublet chemotherapy and bevacizumab, if eligible (NCT03438396) [1]. Currently, in this population there is no standard of care and ORRs are typically less than 15% and often of limited duration [2-9].
- TV is currently being evaluated in combination with pembrolizumab (PD-1 inhibitor), bevacizumab, or carboplatin in cervical cancer (NCT03786081), or as a monotherapy in multiple other solid tumors (NCT03913741, NCT03485209, NCT03657043).
- The anti-tumor activity of TV may be multimodal as TV can induce tumor cell death through several mechanisms, including direct and bystander MMAE-mediated cytotoxicity, as well as antibodydependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and immunogenic cell death (ICD) [10,11].
- To better characterize immune-mediated tumor cell killing by TV and further the rationale for combination with pembrolizumab, we set out to refine our understanding of TV-mediated ICD and subsequent immunomodulatory effects.

References

- 1. Coleman RL et al. Presented at the 2020 ESMO Congress; Sep 19 21, 2020.
- 2. Van den berg YW et al. Blood. 2012;119(4):924-932. 3. Miller DS et al. Gynecol Oncol. 2008;110(1):65-70.
- 4. Bookman MA et al. Gynecol Oncol. 2000;77(3):446-449.
- 5. Garcia AA et al. Am J Clin Oncol. 2007;30(4):428-431
- 6. Monk BJ et al. J Clin Oncol. 2009;27(7):1069-1074. 7. Santin AD et al. Gynecol Oncol. 2011;122(3):495-500
- Schilder RJ et al. Gynecol Oncol. 2005;96(1):103-107
- 9. Chung HC et al. J Clin Oncol. 2019;37(17):1470-1478.
- 10. Alley SC et al. Cancer Res. 2019;79(13 Suppl): Abstract 221. 11.Breij E et al. Cancer Res. 2014 ;74(4):1214-1226.

¹Seagen, Inc., Bothell, WA, USA; ²Genmab US, Princeton, NJ, USA

Tisotumab vedotin induces hallmarks of early ICD

No Treatment Non-binding ADC Tisotumab vedotir

Figure 1. TV induces secretion of ATP and HMGB1. TV and MMAE drove ATP secretion (A) and high mobility group box 1 (HMGB1) release (B). TF-expressing A431, MDA-MB-231, and/or HPAFII tumor cells were incubated with 100nM MMAE free drug or 1µg/mL TV or non-binding ADC for 48 hours [10].

Figure 2. TV induces ER stress signaling. TV and MMAE triggered multiple ER stress pathways. TF-expressing MDA-MB-231 tumor cells were incubated with 100nM MMAE free drug or 1µg/mL TV or non-binding ADC for 16 hours [10].

Tisotumab vedotin-treated tumor cells activate immune cells in vitro

Figure 3. TV-killed tumor cells activate innate immune cells. Upregulation of the activation marker CD86 on CD14+ monocytes (A) and release of the MIP-1 β chemokine (B) was observed when PBMCs were cocultured for 24 hours with TF-expressing MDA-MB-231 tumor cells treated with TV or MMAE free drug. Significance was determined using non-binding ADC as the comparison with the Holm-Sidak method, with alpha = 0.05. Each row was analyzed individually, without assuming a consistent SD. P-value: * < 0.05.

Figure 4. TV-killed tumor cells promote T cell activation that is amplified by PD-1 blockade. Increased release of IFN_γ (A) was observed following co-culture of PBMCs with tumor cells treated with TV or MMAE free drug in the presence of nivolumab or pembrolizumab. T cell proliferation, measured by CFSE dilution, was observed following co-culture of PBMCs for 48 hours with tumor cells treated with TV or MMAE free drug (B).

Significance was determined using non-binding ADC as the comparison with the Holm-Sidak method (alpha = 0.05). Each row was analyzed individually, without assuming a consistent SD. P-value: * < 0.05.

Figure 6. TV induces upregulation of human chemokine and type I IFN response genes by **xenograft tumor cells.** Gene ontology (GO) analysis of human transcripts from tumors treated as in Figure 5 demonstrated that immune-related gene categories were upregulated in tumor cells following treatment with TV. Two examples of GO gene categories were selected from the top 40 most significantly altered categories (A). Transcripts encoding human chemokines (B, top) as well as type I interferon (IFN) response genes (B, bottom) were significantly upregulated in tumor cells following treatment with TV. Statistical analysis was performed using a one-way ANOVA with Sidak's multiple comparison test. P-value: **** < 0.0001.

Dav 5

Dav 3

RESULTS

Tisotumab vedotin has anti-tumor activity in vivo

Figure 5. TV has anti-tumor activity in vivo in a TF-expressing xenograft tumor model. HPAFII pancreatic tumors in nude mice were treated with a single 3 mg/kg dose of TV, non-binding ADC, or naked tisotumab antibody. Tumors were harvested at days 3 and 5 post-treatment, cut in half, and processed for either RNAseq (Illumina HiSeq platform) or IHC.

Tisotumab vedotin stimulates expression of chemokine and type I IFN response genes by xenograft tumor cells

Figure 7. TV induces upregulation of human genes encoding HLA Class I and PD-L1 by tumor cells. Human transcripts encoding MHC-Class I, B2M, and the transporter associated with antigen processing genes (TAP-1, -2) (A) as well as PD-L1 (B) were upregulated by tumor cells following treatment with TV. Upregulation of MHC-Class I genes may allow tumor cells to present tumor antigens to CD8 T cells and drive anti-tumor adaptive immune responses. Statistical analysis was performed using a one-way ANOVA with Sidak's multiple comparison test. P-value: * < 0.05, ** < 0.01, ***< < 0.001, **** < 0.0001.

Tisotumab vedotin promotes recruitment of mouse immune cells to xenograft tumors

Figure 8. TV recruits mouse F4/80+ macrophages and CD11c+ APCs to tumors. IHC staining of TF-expressing xenograft tumors treated as above demonstrated an increase in F4/80+ macrophages and CD11c+ antigen-presenting cells (APCs) at the tumor site following treatment with TV (A and B/C, left panels). RNAseq analysis of mouse transcripts corroborated these findings, showing a significant increase in Cd68 transcripts (which encode the macrophage marker CD68) and an increase in Itgax transcripts (which encode CD11c) in tumors following treatment with TV (B/C, right panels). Statistical analysis was performed using a one-way ANOVA with Sidak's multiple comparison test. P-value: * < 0.05, **** < 0.0001. Digital image analysis was performed using Halo image analysis

CONCLUSIONS

• Data from these preclinical models show that TV induces immunogenic tumor cell death, which can promote activation and recruitment of immune cells to the tumor. • The totality of data provides evidence for the immunomodulatory effects of TV and bolsters rationale for combining TV with immune checkpoint agents. Ongoing analyses aim at further characterizing the immune response induced by TV in preclinical models and patients.

Acknowledgments: We would like to thank Kristen Gahnberg for embedding and sectioning tissues for these studies and Anthony Cao for his early work identifying hallmarks of ICD in response to TV treatment in vitro [10]. Disclosures: EG, KH, SA, ET, JG, RT, KS, CJ, MB, JG, SJ, LN, and SJG are employees of and hold stock in Seagen, Inc. JRH, LKB, and IS are employees and hold stock in Genmab A/S.