

¹²Vita-Salute San Raffaele University; IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy; ¹³Astellas, Northbrook, IL, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁵Yale Cancer Center, New Haven, CT, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Center and University of Washington, Seattle, WA, USA; ¹⁶Fred Hutchinson Center and University of Washingto

Cisplatin-Ineligible Patients with Advanced Urothelial Carcinoma have Limited Treatment Options

- Cisplatin-based chemotherapy is the first-line standard of care for advanced urothelial carcinoma and is associated with an overall survival benefit¹
- Approximately half of patients with advanced urothelial carcinoma in the United States are cisplatin-ineligible²
- PD-1/PD-L1 inhibitors are approved in the first line for cisplatin-ineligible patients with advanced urothelial carcinoma whose tumors express PD-L1^{3,4}
- Objective responses occur in ~20–30% of patients unselected for PD-L1 expression
- Enfortumab vedotin has demonstrated survival benefit in patients who have received both platinum-containing chemotherapy and a PD-1/PD-L1 inhibitor⁵
- Cisplatin-ineligible patients have a high unmet need for treatment options after first-line PD-1/PD-L1 inhibitors
- To our knowledge EV-201 is the first trial to report results in this patient population⁶
- Previously presented Primary Analysis results of EV-201 Cohort 2 included a 52% Overall Response Rate with a 20% Complete Response Rate, and a median Duration of Response of 10.9 months⁵
- Here we present an updated analysis with an additional 3 months of follow-up
- Primary Analysis Data Cutoff: 08 Sep 2020; 3 month updated Data Cutoff: 04 Dec 2020

Enfortumab Vedotin: Nectin-4 Directed Therapy Proposed Mechanism of Action

Enfortumab vedotin is an investigational agent in some settings, and its safety and efficacy have not been established © 2021 Seagen Inc., Bothell WA 98021. All rights reserved. USM/EVM/2021/0001

EV-201: Non-Comparative, Pivotal Phase 2 Trial

- Maximum dose permitted is 125 mg b. 3 additional patients were enrolled but did not receive enfortumab vedotin due to patient decision, clinical deterioration, and low hemoglobin
- respectivel c. 2 additional patients were enrolled but did not receive enfortumab vedotin due to admission to the hospital for disease progression and hospice care, respectively

Acknowledgments

Thank you to our patients and their families for their participation in the study, and to all research personnel for their support of this important trial.

References

1. von der Maase H, et al. J Clin Oncol. 2005;23(21):4602-8. . Galsky MD, et al. J Clin Oncol. 2011;29(17):2432-8. 3. Vuky J, et al. J Clin Oncol. 2020;38(23):2658-66.

4. Balar AV, et al. Lancet. 2017;389(10064):67-76. . Powles T, et al. N Engl J Med. 2021;384(12):1125-35. Balar AV, et al. ASCO-GU 2021:Abstract 394.

Disclosures: This study was funded by Seagen Inc. and Astellas Pharma, Inc. BAM, AVB, JER, MSvdH, YL, AN, and DPP hold a consulting and advisory role with Seagen Inc. and Astellas Pharma, Inc. EYY holds a consulting and advisory role with Seagen Inc. BAM, JER, MSvdH, MRH, DPP received research funding from Seagen Inc. and Astellas Pharma, Inc. AVB, DPP, J-LL, MNS, AN, and EYY received research funding from Seagen Inc. and Astellas Pharma, Inc. J-LL received honoraria from Astellas Pharma, Inc. EIH received honoraria from Astellas Pharma, Inc. Seagen Inc. YL and S-YL received travel/accommodations/expenses from Seagen Inc. and Astellas Pharma, Inc. S-YL and JT are employees of and have ownership interest in Seagen Inc. JLS is an employee of Astellas Pharma, Inc.

Enfortumab Vedotin in Cisplatin-Ineligible Patients with Locally Advanced or Metastatic Urothelial Cancer who Received Prior PD-1/PD-L1 Inhibitors: An Updated Analysis of EV-201 Cohort 2

Bradley McGregor, MD¹; Arjun V. Balar, MD²; Jonathan Rosenberg, MD³; Michiel van der Heijden, MD⁷; Michael R. Harrison, MD⁸; Elisabeth I. Heath, MD, FACP⁹; Mark N. Stein, MD¹⁰; Yohann Loriot, MD, PhD¹¹; Andrea Necchi, MD¹²; Joyce Steinberg, MD¹³; Shang-Ying Liang, PhD¹⁴; Janet Trowbridge, MD¹⁴; Daniel Petrylak, MD¹⁵; Evan Y. Yu, MD¹⁶ ¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA; ⁴The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; ⁵Samsung Medical Center, Seoul, South Korea; ⁶Asan Medical Center and University, Detroit, MI, USA; ¹⁰Columbia University, Detroit, MI, USA; ¹¹Institut de Cancérologie Gustave Roussy, Paris, France; ¹⁰Columbia University, Detroit, MI, USA; ¹⁰Columbia University, Durham, NC, USA; ¹¹Institut de Cancérologie Gustave Roussy, Paris, France; ¹⁰Columbia University, Detroit, MI, USA; ¹⁰Columbia Universi

Key Eligibility Criteria

Key Inclusion Criteria

- Locally advanced unresectable or metastatic urothelial carcinoma (including divergent differentiation)
- Previously treated with a PD-1/PD-L1 inhibitor
- No prior exposure to platinum-containing chemotherapy in the locally advanced or metastatic setting and ineligible for cisplatin-containing chemotherapy due to:
- Impaired renal function (creatinine clearance \geq 30 and <60 mL/min)
- Hearing loss ≥Grade 2
- ECOG PS score ≥2
- Progression during or following most recent treatment

Key Exclusion Criteria

- Ongoing sensory or motor neuropathy ≥Grade 2
- Active central nervous system metastases
- Uncontrolled diabetes mellitus^a

a. Hemoglobin A1C (HbA1c) ≥8% or HbA1c of 7% to <8% with associated diabetes symptoms, polyuria or polydipsia, that were not otherwise explained

Patient Disposition

a. 2 patients did not receive enfortumab vedotin treatment due to admission to the hospital for disease progression and pursuing hospice care, respectively

Key Demographics and Disease Characteristics

Characteristic	Patients (N=89)
Median age (range), years	75 (49, 90)
Male sex, n (%)	66 (74%)
ECOG performance status	
0 or 1, n (%)	78 (88%)
2, n (%)	11 (12%)
Body mass index ≥30 kg/m², n (%)	13 (15%)
Renal function based on creatinine clearance	
Normal/Mild decrease: ≥60 mL/min, n (%)	27 (30%)
Moderate decrease: ≥30 and <60 mL/min, n (%)	60 (67%)
Severe decrease: ≥15 and <30 mL/min, n (%)	2 (2%)
Primary tumor location	
Upper tract ^a , n (%)	38 (43%)
Bladder/other, n (%)	51 (57%)
Metastasis sites	
Lymph nodes only, n (%)	18 (20%)
Visceral disease ^b , n (%)	70 (79%)
Liver, n (%)	21 (24%)
Received prior PD-1/PD-L1 therapy in first line, n (%)	87 (98%)
Responder ^c to PD-1/PD-L1-containing therapy, n (%)	22 (25%)

Includes renal pelvis and ureter

Sites of visceral disease include liver, lung, intra-thoracic or intra-abdominal soft tissue, kidney, spleen, ovary, adrenal glands, and bone Responses were investigator reported

Updated Best Overall Response by BICR

ORR per RECIST v 1.1 assessed by BICR	Patients (N=89), %
Confirmed ORR (95% Cl ^a)	51 (39.8, 61.3)
Best overall response [♭]	
Confirmed complete response	22
Confirmed partial response	28
Stable disease	30
Progressive disease	10
Not evaluable ^c	9

a. CI = Confidence Interval, computed using the Clopper-Pearson method
b. Best overall response according to RECIST v1.1. Complete response and partial response were confirmed with repeat scans ≥28 days after

initial response. c. Includes 5 patients who did not have response assessment post-baseline, 2 patients whose post-baseline assessment did not meet the minimum

interval requirement for stable disease, and 1 patient whose response cannot be assessed due to incomplete anatomy.

No. at Risk Cohort 2

Cohort Subgrou Overall Age ≥75 ye Femal Race White Non-w ECOG F 1–2 Bellmunt 0–1

Primary Upper Bladde Liver me Yes No Best res Respo Non-re PD-L1 e

No. at Risk

Updated Duration of Response per BICR

Updated Objective Response Rate per BICR by Subgroup

Cohort 2 Patients (N=89)					
Subgroup	n/N	ORR, % (95% CI)	% (95% CI)		
Overall	45/89	⊢	51 (39.8, 61.3)		
Age					
<75 years	24/43	⊢−−−− −−−−−	56 (39.9, 70.9)		
≥75 years	21/46	⊢	46 (30.9, 61)		
Sex					
Female	13/23	⊢	57 (34.5, 76.8)		
Male	32/66	⊢	48 (36, 61.1)		
Race					
White	28/62	⊢	45 (32.5, 58.3)		
Non-white	17/27		63 (42.4, 80.6)		
ECOG PS					
0	23/37	┝────	62 (44.8, 77.5)		
1–2	22/52	⊢−−−−	42 (28.7, 56.8)		
Bellmunt risk score					
0–1	33/66	⊢−−−− 4	50 (37.4, 62.6)		
≥2	12/23	├ ── ── ──┥	52 (30.6, 73.2)		
Primary tumor sites					
Upper tract	22/38	⊢	58 (40.8, 73.7)		
Bladder/Other	23/51	⊢	45 (31.1, 59.7)		
Liver metastasis					
Yes	9/21	F	43 (21.8, 66)		
No	36/68	⊢	53 (40.4, 65.2)		
Best response to prior C	CPI				
Responder	14/22	⊢−−−−	64 (40.7, 82.8)		
Non-responder	31/67	⊢	46 (34, 58.9)		
PD-L1 expression					
CPS <10	27/53	⊢−−−− −−	51 (36.8, 64.9)		
CPS ≥10	13/27	├───── ──	48 (28.7, 68.1)		
	0	10 20 30 40 50 60 70 80			

Responses were observed across all subgroups, including patients:

- with primary tumor sites in the upper tract (ORR=58%)
- with liver metastasis (ORR=43%)
- who did not respond to prior PD-1/PD-L1 inhibitors (ORR=46%)

Updated Progression-Free Survival per BICR

Updated Overall Survival

TRAEs in ≥

- (≥Grade 3 **Overall TRA** Alopecia Periphera Fatigue Decrease Pruritus Rash ma Dysgeus Weight de Anemia
- Diarrhea Nausea
- Neutrope
- Hypergly Lipase in

These safety data are consistent with the primary analysis and the previously reported safety profile of EV

Any grade, ≥Grade 3, % Median ons Resolution/i

Skin Reactions

- adverse reactions^d Most ≤Grade 2, no Grade 4 or 5 events

- 1 treatment discontinuation due to Grade
- 3 dermatitis bullous (23% vs. 8%) a. Events categorized based on queries for related MedDRA (Medical Dictionary for Regulatory Activities) terms v. 23.0
 b. Most occurred in Cycle 1
- care measures

Summary/Conclusions

- subgroups
- Activity demonstrated in EV-201 Cohort 2 builds upon the results shown in PD-1/PD-L1 inhibitor and platinum-treated patients in EV-301 These data support inclusion of enfortumab vedotin in the treatment of

Abbreviations: AE=adverse event(s); BICR=Blinded Independent Central Review; BMI=body mass index; CI=Confidence Interval; CPI=checkpoint inhibitor: CPS=combined positive score: DOR=duration of response: IV=intravenous: ECOG PS=Eastern Cooperative Oncology Group performance status; HG=hyperglycemia; ORR=objective response rate; OS=overall survival; PD=progressive disease; PD-1/PD-L1=programmed cell death protein 1/programmed death-ligand 1; PFS=progression-free survival; PN=peripheral neuropathy; RECIST=Response Evaluation Criteria in Solid Tumors; TRAE=Treatment-Related Adverse Event

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster. Bradley McGregor, Bradley_McGregor@dfci.harvard.edu

Treatment-Related Adverse Events (TRAEs)

0% of patients (any Grade) or ≥5%	Patients (N=89), n (%)		
	Any Grade	≥Grade 3	
Es	86 (97)	49 (55)	
	45 (51)	-	
sensory neuropathy	44 (49)	3 (3)	
	30 (34)	6 (7)	
l appetite	29 (33)	5 (6)	
	27 (30)	3 (3)	
ulo-papular	27 (30)	7 (8)	
	25 (28)	-	
creased	23 (26)	1 (1)	
	22 (25)	5 (6)	
	20 (22)	5 (6)	
	20 (22)	1 (1)	
ia	11 (12)	8 (9)	
emia	8 (9)	5 (6)	
reased	7 (8)	5 (6)	

• TRAEs led to discontinuations in 16% of patients

Peripheral sensory neuropathy was the most common reason (4%)

 4 deaths considered to be treatment-related by the investigator were previously reported and included:

• acute kidney injury, metabolic acidosis and multiple organ dysfunction syndrome, occurred within 30 days of first dose in patients with BMI ≥30 kg/m²

• pneumonitis, occurred >30 days of last dose

• all 4 deaths were confounded by age (\geq 75 years) and other comorbidities

Treatment-Related Adverse Events of Special Interest^a

	Skin Reactions	Peripheral Neuropathy	Hyperglycemia	
)	61	56	10	
	17	8	6	
t, months	0.5 ^b	2.7	0.5 ^b	
nprovement ^c , %	80	54	89	

These events represent composites of related adverse events.

- No Grade 5 events, 1 Grade 4 event
- 13 patients with severe cutaneous
- 4 patients with Grade 3 events: stomatitis,
- skin exfoliation. dermatitis bullous.
- dermatitis exfoliative generalised

Resolution/Improvement as of last follow-up
A range of skin reaction preferred terms, irrespective of grade

AEs are generally treatable with proper dose modifications and supportive

 Cisplatin-ineligible patients need effective treatment options following immunotherapy • The efficacy and safety data in this updated analysis, with an additional 3 months of follow-up for EV-201 Cohort 2, are consistent with those of the Primary Analysis: 51% ORR, with a 22% complete response rate and consistent response rates across

13.8 months median duration of response

• Manageable safety profile in an elderly cisplatin-ineligible patient population

cisplatin-ineligible patients following immunotherapy and continued investigation of enfortumab vedotin in earlier disease settings

- **Peripheral Neuropathy (PN)**
- PN rate was similar in patients with and without pre-existing PN (60% vs. 55%)
- Hyperglycemia (HG) • Higher rate of HG in patients with
- pre-existing HG than those without pre-existing HG (20% vs. 7%)
- Higher rate of HG in patients with BMI \geq 30 kg/m² than those with BMI <30 kg/m²