Reversible chemical modification of antibodies: a complementary approach to tuning FcγR binding that maintains anti-tumor activity while mitigating peripheral immune activation

Philip N. Moquist¹, Chris I. Leiske¹, Noah A. Bindman¹, Xinqun Zhang¹, Nicole Duncan¹, Weiping Zeng¹, Serena W. Wo¹, Abbie Wong¹, Clark M. Henderson¹, Karalyne Crowder¹, Haley D. Neff-LaFord¹, Django Sussman¹, Shyra J. Gardai¹, Matthew R. Levengood¹ ¹Seagen, Inc., Bothell, WA

Background

- Removal of fucose on the antibody core glycan increases binding to FcγRIIIa (CD16a) and drives increased antibody-dependent cellular cytotoxicity (ADCC) and immune agonism.
- Robust antibody-Fcγ engagement and immune cell binding of nonfucosylated antibodies in the periphery can lead to unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions.
- Example: Difference in immune activation for anti-CD40 antibodies is tied to increased FcγRIIIa binding

Antibody	FcγRIIIa Affinity (K _D)	RP2D ^{&}
Dacetuzumab (hS2C6, SGN-40)	232	8 mg/kg ¹
SEA-CD40 (non-fucosylated hS2C6)	11	10 mcg/kg ²
	9 -	

- An ongoing challenge in the field of antibody and immuno-oncology therapeutics is identifying a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation.
- A method for the reversible modulation of antibody-Fcγ receptor interactions was designed and applied to several effector-function enhanced antibodies

Technology Overview

- High concentrations of active antibody during infusion can lead to rapid immune activation and cytokine production
- Goal: Decrease concentration of active species at the time of infusion then restore binding and function over time
- Strategy:
 - Complete reduction and conjugation to antibody interchain disulfides impairs FcγR binding at the time of infusion
- Reversible cysteine-maleimide linkage deconjugation over time in circulation to restore binding and function
- Short, defined polyethylene glycol (PEG) maleimide forms homogeneous conjugates and is inert after deconjugation

Scheme 1. Chemical conjugation to the antibody Fc prevents unwanted peripheral immune engagement and cross-linking at the time of administration. Deconjugation of the blocking groups over time in circulation results in reformation of antibody interchain disulfides and restoration of Fc binding and immune function.

Results

PEGylation of antibody interchain disulfides impairs Fc-FcγR interactions Binding affinity of PEG conjugates to FcγRs

Figure 1. Impact of PEGylation on FcγR binding as assessed by biolayer interferometry. Conjugates showed decrease in binding with larger PEG units. FcRn and antigen binding are unaffected by conjuation.

0 1 2 3 4 5 6 7

Time (dav)

PEG12 format reduces non-fucosylated binding to wild-type IgG1 levels

Fc binding and function can be restored upon maleimide deconjugation Evaluation of maleimide reversibility ex vivo and in vivo

Figure 3. The rate of maleimide-PEG deconjugation was assessed in vivo in rats (15 mg/kg dose). The PEG:Ab ratio was measure by intact SEC-MS, and the extent of binding and effector function measured using a Jurkat $Fc\gamma RIIIa$ NFAT reporter assay.

0.001 0.01 0.1

Antibody (ng/ml)

