Systemic Administration of Ladiratuzumab Vedotin Alone or in Combination with Pembrolizumab Results in Significant Immune Activation in the Tumor **Microenvironment in Metastatic Breast Cancer Patients**

Lajos Pusztai¹, Hailing Lu², Christopher Hale², Anne Grosse-Wilde², Jennifer Specht³, Shanu Modi⁴, Hyo Han⁵, Javier Cortes⁶, Mafalda Oliveira⁷, Phillip Garfin², Zejing Wang², Matthew Onsum² ¹Yale School of Medicine, New Haven, CT; ²Seagen Inc., Bothell, WA; ³Seattle Cancer Care Alliance, University of Washington, Seattle, WA; ⁴Memorial Sloan Kettering Cancer Center, New York, NY; ⁵H.Lee Moffitt Center, NY; ⁵H.Lee Moffitt Center, NY; ⁵H.Lee Moffitt Center, NY; ⁵H.Lee

Background

- Ladiratuzumab vedotin (LV) is an investigational antibody-drug conjugate (ADC) composed of a humanized anti-LIV1 Immunoglobulin G1 (IgG1) conjugated with monomethyl auristatin E (MMAE), a microtubule-disrupting agent.
- LV targets LIV-1, a transmembrane protein expressed by various cancers.¹Along with a cytotoxic effect, LV has been shown to induce immunogenic cell death (ICD) in preclinical studies.²
- LV is currently being investigated as a monotherapy (SGNLVA-001, hereafter referred to as LVA-001/monotherapy) and in combination with pembrolizumab (pembro; SGNLVA-002, hereafter referred to as LVA-002/LV+pembro) in patients with metastatic breast cancer and other solid tumors.^{3,4,5}
- This correlative biomarker study aims to assess the ability of LV to modulate the tumor microenvironment (TME) in triple negative breast cancer (TNBC) patients.

Proposed Mechanism of Action

- LV
- Humanized IgG1 ADC
- Selectively binds to cells expressing LIV-1
- Conjugated to MMAE
- LV-mediated delivery of MMAE drives antitumor activity through
- Cytotoxic cell killing
- Inducing ICD²

Methods

- Patients with locally advanced or metastatic TNBC were enrolled in LVA-001 (LV monotherapy, 2~2.5mg/kg, every 3 weeks [q3w], in 2~5th line of therapy) and LVA-002 (LV plus pembro 200mg, q3w, 1st line of therapy)
- Tumor biopsies were collected at baseline and after the first dose of treatment (cycle 1 day 5 [C1D5] in LVA-001; C1D5 or C1D15 in LVA-002)

- **RNAseq:** RNA extraction and RNAseq was performed at Q2 Solutions. Differential gene expression was assessed using the DESeq2 package⁶. Gene ontology (GO) analysis was carried out using the TopGO R package⁷ using a Fisher test in conjunction with the "weight" scoring algorithm to assess significantly enriched biological process nodes. Scoring of potential cell type enrichment was done using the xCell method[®] implemented in R. Unless otherwise noted, false discovery rates (FDRs) for individual gene expression comparisons were calculated by the Benjamini-Hochberg method and DESeq p-values.
- Immunohistochemistry (IHC): Cluster of differentiation 8 and 68 (CD8 and CD68), as well as programmed cell death 1 ligand 1 (PD-L1; 22C3) IHC evaluation were performed at Phenopath (Seattle, WA). Combined Positive Score (CPS) was scored according to Agilent's PD-L1 IHC 22C3 pharmDx interpretation manual.

- 1. Sussman D, Smith LM, Anderson ME, et al. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther. 2014;13: 2991-3000.
- 2. Cao A, Higgins S, Stevens N, et al., Additional mechanisms of action of ladiratuzumab vedotin 6. Love MI, Huber W, Anders S. (2014). "Moderated estimation of fold change and dispersion for RNAcontribute to increased immune cell activation within the tumor, AACR 2018, Abstract # 2742.
- 3. Modi S, Pusztai L, Forero A, et al., Phase 1 Study of the Antibody-Drug Conjugate SGN-LIV1A in 7. Alexa A, Rahnenfuhrer J. (2020). topGO: Enrichment Analysis for Gene Ontology. R package version
- Patients with Heavily Pretreated Triple-Negative Metastatic Breast Cancer, SABCS, 2017, Abstract # 2.40.0. PD3-14.
- 4. Specht J, Pusztai L, Forero-Torres A et al. Post-treatment biopsies show evidence of cell cycle arrest Biology (2017) 18:220. and immune cell infiltration into tumors of ladiratuzumab vedotin-treated advanced breast cancer 9. Hothorn T, Hornik K, van de Wiel MA, et al. "Implementing a Class of Permutation Tests: The coin patients, ESMO 2018, Presentation # 286PD 5. Han H, Diab S, Alemany C, et al. Open label phase 1b/2 study of ladiratuzumab vedotin in

combination with pembrolizumab for frontline treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer. Proceedings of the 2019 San Antonia Breast Cancer Symposium. 2019; Abstract #15 seq data with DESeq2." Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8. 8. Aran D, Hu Z, Butte A. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome

Package". In: Journal of Statistical Software 28.8 (2008), pp. 1–23. DOI: 10.18637/jss.v028.i08. URL: http://www.jstatsoft.org/v28/i08/.

DISCLOSURES: Seagen Inc. provided research funding to the institutions of LP, JS, SM, HH, JC, and MO. HL, CH, AGW, PG, ZW, and MO are employees of and have equity ownership in Seagen Inc.

Results

LV Monotherapy Induced Immune Activation in TME in Breast Cancer Patients

LV Monotherapy Induces Immune Activation in TME as Measured by RNA Seq

Figure 1. Volcano plot showing differentially expressed genes induced by LV monotherapy. Paired baseline and on-treatment (C1D5) biopsies were used for RNAseq (N=59). Differential expression was assessed by comparing paired baseline-C1D5 RNAseq profiles. We identified differentially expressed genes (highlighted in red) using fold-change and significance cutoffs (absolute foldchange > 2, adjusted p-value/FDR < 0.01). We identified 59 up-regulated genes at C1D5 and 15 down-regulated genes at C1D5. Some of the top differentially expressed genes (SIGLEC1, MS4A4A, CD163) relate to macrophage function. Genes differentially expressed at an FDR<1e-7 are shown with labels. Some outlier points removed for visualization purposes.

GO.ID GO:0006956 GO:0042742 GO:0042116 GO:0070613 GO:0006898 GO:0006910 GO:0006954 GO:0006641 GO:0006953 GO:0071223

LV Increases Macrophage Infiltration, Induces MHC, Co-stimulatory Molecules, and PD-L1 Expression

Figure 2. Increased macrophage infiltration and PD-L1 expression and induction of major histocompatibility complex (MHC) and co-stimulatory molecules by LV monotherapy. A: representative IHC pictures showing macrophage (CD68) and PD-L1 (22C3) staining in tumor biopsies collected at baseline and C1D5 of an LVA-001 patient. B: Summary graphs showing CD68 IHC results (% of cells positive for CD68 in tumor stroma) and PD-L1 CPS scores in all LVA-001 patients with evaluable samples (N=79 for CD68; N=73 for PD-L1). C: Summary graphs showing induction of MHCII genes (HLA-DRB1 and HLA-DQA1) and co-stimulatory molecules (CD80 and CD86) by RNAseq analysis (N=59). There was also significant induction of MHCI genes, inflammatory cytokines, and overall increase in tumor inflammation score (not shown).

LV + Pembro Induced Immune Activation in TME in Breast Cancer Patients

Initial RNAseq Data from LV+Pembro Shows Stronger Immune Activation at C1D15

Figure 3. Volcano plot showing differentially

expressed genes induced by LV plus pembro. Paired baseline and on-treatment (C1D15) from initial data set were used for RNAseq (N=16). Differential expression was assessed by comparing paired baseline-C1D15 RNAseg profiles. We identified differentially expressed genes (highlighted in red) using fold-change and significance cutoffs (absolute fold-change > 2, adjusted p-value/FDR < 0.01). We identified 342 upregulated genes at C1D15 and 192 down-regulated genes at C1D15. ZEB2, L1TD1, DNAJC5B, GAB3, C11orf21 and TRGV3 were upregulated at an FDR<1e-7 (shown with labels). Some outlier points were removed for isualization purposes.

GO:0002250 GO:0006955 GO:0006952 GO:0050863 GO:0030217 GO:1903039 GO:0001909 GO:0032609 GO:0032655 GO:0045619

GO.ID

Increased Infiltration of T Cells and Induction of PD-L1 on C1D5 in an LVA-002 Patient

	CD3	CD8	CD68	PD-L1
Baseline				
C1D5				

Conclusions

• LV monotherapy results in immune activation in the TME in patients with metastatic TNBC with a significant induction of macrophage infiltration, increase in MHCI/II, co-stimulatory molecules, pro-inflammatory cytokines/chemokines, and PD-L1. LV-induced TME changes in cancer patients are consistent with preclinical evidence that LV induces ICD.

Table 1. GO Terms Highlight Activation of Innate Immune Response – Top 10 Terms

Form	D voluo
	P-value
complement activation	1.80E-06
lefense response to bacterium	2.50E-06
nacrophage activation	1.50E-05
egulation of protein processing	3.50E-05
eceptor-mediated endocytosis	5.10E-05
phagocytosis, recognition	0.00012
nflammatory response	0.00019
riglyceride metabolic process	0.00033
acute-phase response	0.00048
cellular response to lipoteichoic acid	0.00061

Table 2. GO Terms Highlight Activation of Adaptive Immune Response - Top 10 Terms

- Ferm	P-value
adaptive immune response	< 1e-30
mmune response	1.80E-24
lefense response	5.30E-23
egulation of T cell activation	1.90E-19
cell differentiation	1.70E-16
Pos reg. of leukocyte cell-cell adhesion	3.70E-16
eukocyte mediated cytotoxicity	2.30E-14
nterferon-gamma production	2.90E-14
egulation of interleukin-12 production	1.60E-13
egulation of lymphocyte differentiation	1.60E-13

Figure 4. Representative IHC pictures showing the increased infiltration of CD3⁺ and CD8⁺ T cells, CD68⁺ macrophages, and increased PD-L1 staining in C1D5 biopsy as compared to baseline biopsy collected from an LVA-002 patient. Brown color indicates cells stained positive for each marker.

3. Comparison of LV Monotherapy and LV+Pembro Combination Biomarker Data

Stronger Induction of DC and CD8 T-Cell Signatures in LVA-002 (LV+Pembro) at C1D15 by xCell Analysis*

4. LV+Pembro-induced Immune Activation is Associated with Clinical Response

Patients with Tumors that Respond to Therapy Have Greater MHC and Inflammatory Cytokine Induction (LVA-002: LV+Pembro)

HLA-DOA •FDR = 0.02 **√** 100 Baseline C1D15 Baseline C1D15 Non-responders Responders

IL-18

FDR = 0.01

Baseline C1D15 Baseline C1D15

Non-responders Responders

Figure 5. Comparison of xCell analysis (RNAseq) results on tumor infiltrating immune cells (macrophage, dendritic cells [DC], and CD8 T cells) and CD274 (PD-L1) gene expression in LV monotherapy (LVA-001) and LV+Pembro (LVA-002) P-values for xCell gene signatures were calculated usin a paired t-test. For PD-L1, the FDR is derived from the differential expression analysis comparing C1D5/C1D15 and baseline. N=59 for LVA-001; N=16 for LVA-002 (more patient data pending).

*Data remains to be confirmed via a direct comparison with more data from LVA-002 samples collected at C1D5

Stronger Induction of CD8 Tumor Infiltration in LVA-002 (LV+Pembro) at C1D15 by IHC Analysis

Figure 6. Comparison of IHC analysis on tumor infiltrating immune cells (CD3⁺ and CD8⁺ T cells CD68⁺ macrophages) and CD274 (PD-L1) staining in LVA-001 and LVA-002. P-values were calculated by a Wilcoxon signed-rank sum using the "coin" permutation framework in R⁹. On-treatment biopsies were collected around C1D5 in LVA-001 and around C1D5 or C1D15 in LVA-002.

* For LVA-001, CD3 IHC was only performed on samples from one cohort of the study.

C1D5 pairs C1D15 pairs

Treatment-induced Increase in CD4 T Cells and DC in Tumor are Associated with Clinical Response (LVA-002: LV+Pembro)

Red: Non-responders (NR): stable disease (SD) or progressive disease

Blue: Responders (R): partial response (PR) complete response (CR)

Red: Non-responders (NR)

progressive disease (PD)

stable disease (SD) of

Blue: Responders (R):

partial response (PR) o

complete response (CR)

RNAseg data showed that induction of genes associated with CD4 T cells (especially Effector Memory [EM] CD4 T cells) and conventional DC (cDC) are associated with clinical responses P-values were calculated by using a likelihood ratio test of two nested linear models. The full model considered the xCell score as a dependent on response, timepoint, and the interaction of those two features. The simpler, nested, model considered the xCell score as dependent on just response and timepoint. Thus, the resulting likelihood ratio test assessed the importance of the interaction between time and response and the relationship to xCell signature values. A more significant p-value indicates that xCell signatures are behaving differently over time between responders and nonresponders

Figure 7. xCell gene signature analysis of

Figure 8. Induction of MHC genes (HLA-DMA and HLA-DOA) and the inflammatory cytokine interleukin-18 (IL-18) are associated with clinical responses. FDRs are calculated by a Benjamini-Hochberg correction of multiple testing for p-values generated by a DESeq-based likelihood ratio test of two nested models. The term tested between these two models is the interaction between timepoint and response. Overall we have observed 93 genes that are differentially regulated (FDR<0.05) across time between Responders and Non-responders (data not shown).

• Combination of LV plus pembro results in an enhanced immune activation in the TME with activation of adaptive immune response pathways and increased infiltration of CD8 T cells in addition to macrophages. • Preliminary analysis showed that infiltration of T cells and DC, and induction of immune activation genes (MHC and

cytokines) are associated with clinical responses in the context of a LV and pembro combination.