Exploratory Analysis of Brentuximab Vedotin plus CHP (A+CHP) in Frontline Treatment of Patients with CD30+ PTCL (ECHELON-2): Impact of Consolidative SCT

Kerry J. Savage¹, Steven M. Horwitz², Ranjana Advani³, Jacob Haaber Christensen⁴, Eva Domingo Domenech⁵, Giuseppe Rossi⁶, Franck Morschhauser⁷, Onder Alpdogan⁸, Cheolwon Suh⁹, Kensei Tobinai¹⁰, Andrei Shustov¹¹, Marek Trneny¹², Sam Yuen¹³, Pier Luigi Zinzani¹⁴, Lorenz Trümper¹⁵, Tim Ilidge¹⁶, Owen O'Connor¹⁷, Barbara Pro¹⁸, Meredith Little¹⁹, Veronica Bunn¹⁹, Keenan Fenton²⁰, Thomas Manley²⁰, Markus Puhlmann²⁰, Swaminathan Iyer²¹

¹British Columbia Cancer Centre for Lymphoid Cancer, University of British Columbia and the Department of Medical Oncology, Vancouver, BC, Canada; ²Memorial Sloan Kettering Cancer Center, Basking Ridge, NJ, USA; ⁴Odense University Hospital, Odense, Denmark; ⁵Institut Catala D'oncologia, L'Hospitalet de Llobregat, Barcelona, Spain; ⁶Azienda Ospedaliera Spedali Civili di Brescia, Brescia, Italy; ⁷CHRU de Lille, Lille cedex, Nord-Pas-de-Calais, France; ⁸Thomas Jefferson University, Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Philadelphia, PA, USA; ⁹Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine Seoul Korea, Republic of South Korea; ¹⁰National Cancer Center Hospital, Tokyo, Japan; ¹¹University of Washington Medical Center, Seattle, WA, USA; ¹²Charles University General Hospital and First Faculty of Medicine, First Department of Medicine, First Department, ¹⁰Iniversity of Biology, Medicine and Health, University of Manchester, Nather Medical Center, Nather Medical Center, Nather Medical Center, Nather Medical Center, New York, NY, USA; ¹⁰Department of Medicine, First Department of Medicine, First Department of Medicine,

Background: A+CHP Treatment in CD30+ PTCLs

- Study Population by Consolidative SCT in A+CHP Arm in Patients with CR at EOT
- Brentuximab vedotin plus cyclophosphamide, doxorubicin, and prednisone (A+CHP) was approved for adults:
- In 2018 by FDA for previously untreated patients with sALCL or CD30expressing PTCL, including AITL and PTCL-NOS
- In 2019 by Health Canada for previously untreated patients with sALCL, AITL, or PTCL-NOS whose tumors express CD30
- The approvals were based on superior PFS, the primary endpoint, compared to CHOP in the ECHELON-2 study¹ (NCT01777152): PFS (HR=0.71 [95% CI: 0.54, 0.93], p=0.0110)
- OS (HR=0.66 [95% CI: 0.46, 0.95], p=0.0244)
- Given the historically high relapse rate in PTCLs, consolidative stem cell transplant (SCT) is often used in the frontline setting:
- Phase 2 study suggests improved PFS compared to historical expectations²

ALK– sALCL and Non-sALCL

	ALK– sALCL N=76		Non-sALCL N=38		
	SCT (n=27)	No SCT (n=49)	SCT (n=11)	No SCT (n=27)	
Male, n (%)	16 (59)	24 (49)	6 (55)	15 (56)	
Age in years, median (range)	50 (18, 68)	59 (20, 85)	57 (35, 73)	66 (49, 77)	
IPI score, n (%)					
0—1	11 (41)	21 (43)	2 (18)	4 (15)	
2–3	12 (44)	25 (51)	7 (64)	21 (78)	

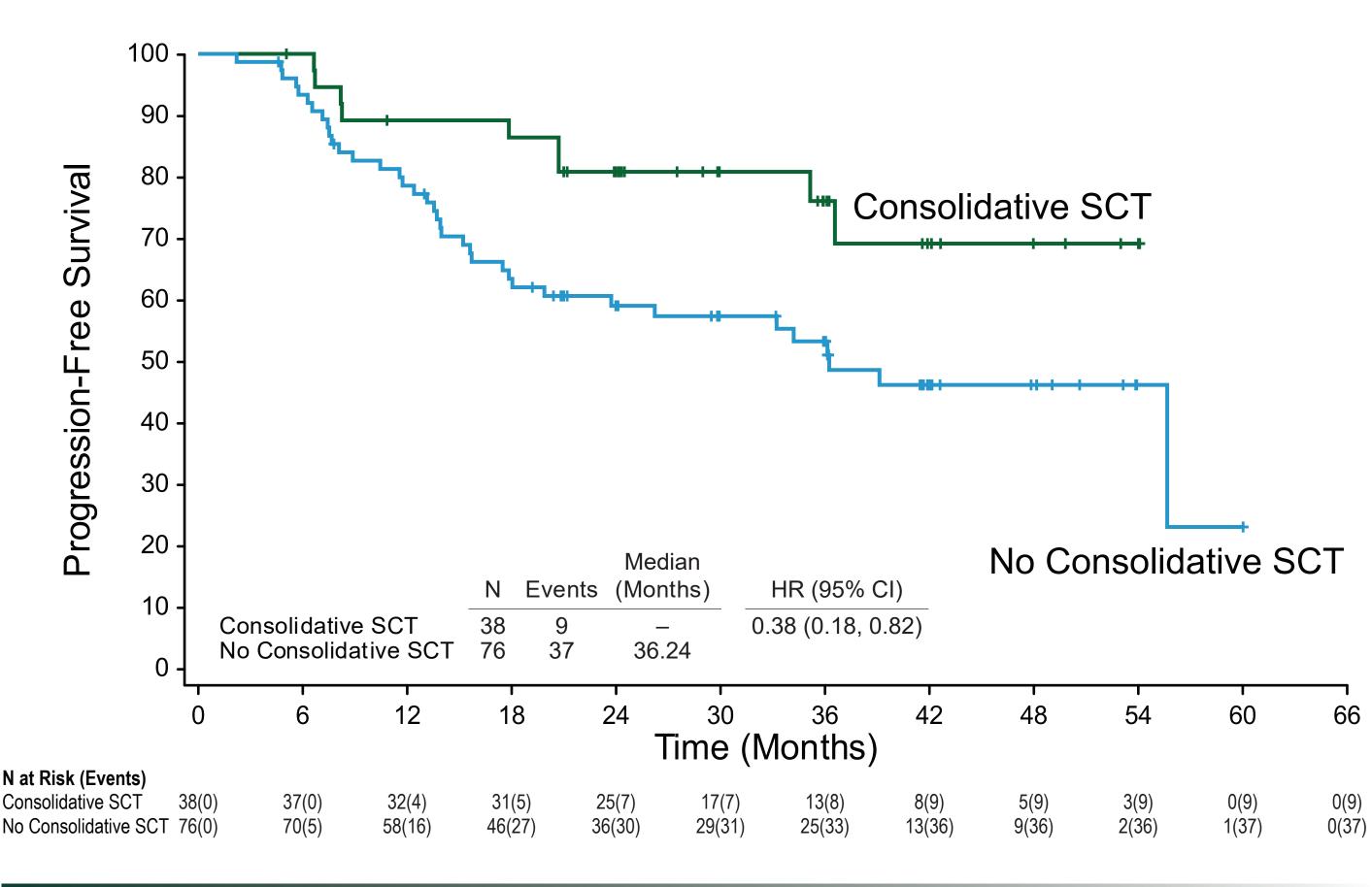
ALK– sALCL and Non-sALCL:

Asia and Non-Asia Countries

		ALK– sALCL N=76		Non-sALCL N=38			
	Asia (n=10)	Non-Asian (n=66)	Asia (n=9)	Non-Asian (n=29)ª			
Intention to transplant at baseline, (%)							
Yes	1 (10)	37 (56)	1 (11)	18 (62)			
No	9 (90)	29 (44)	8 (89)	10 (34)			
Received consolidative	e SCT						
Yes	1 (10)	26 (39)	1 (11)	10 (34)			

Most studies support use of SCT in first complete remission (CR) • No randomized studies, thus practices worldwide vary

Background: Consolidative SCT in ECHELON-2

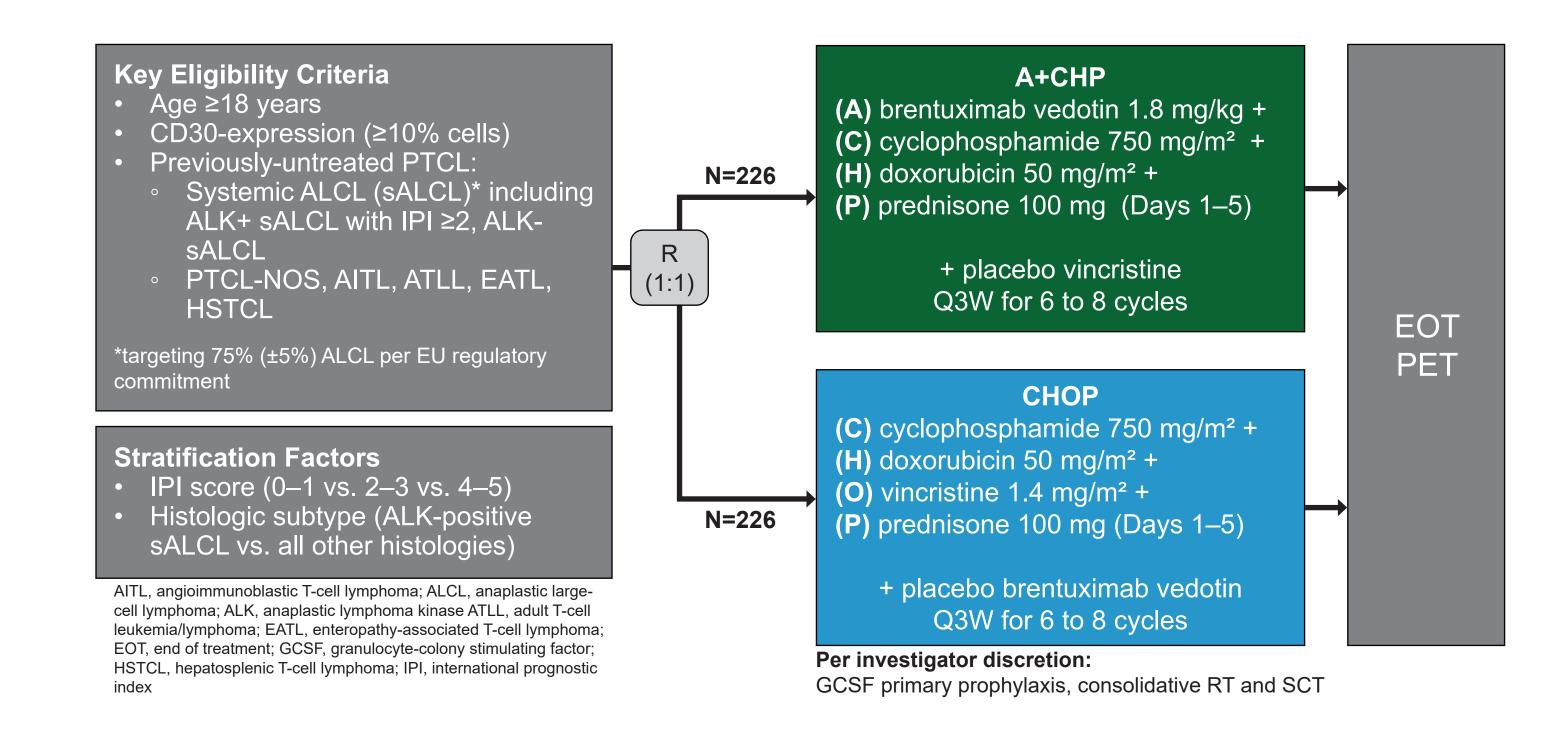

- Per protocol, patients in ECHELON-2 were permitted to receive a consolidative SCT at the discretion of the investigator.
- Primary endpoint PFS: time from randomization to earliest of progressive disease, death, or receipt of subsequent systemic chemotherapy to treat residual or progressive disease
- Consolidative autologous or allogeneic SCT was not considered a PFS event
- Consolidative RT was also not considered a PFS event
- 22% (50/226) in A+CHP arm received a consolidative SCT versus 17% (39/226) in CHOP arm

Purpose of current analysis:

• To explore the impact of consolidative SCT in ECHELON-2, a posthoc analysis was performed of patients in a CR at end of treatment (EOT) after frontline A+CHP to compare the outcome of those who received an SCT and those who did not

4–5	4 (15)	3 (6)	2 (18)	2 (7)
Stage III/IV, n (%)	22 (82)	31 (63)	11 (100)	23 (85)

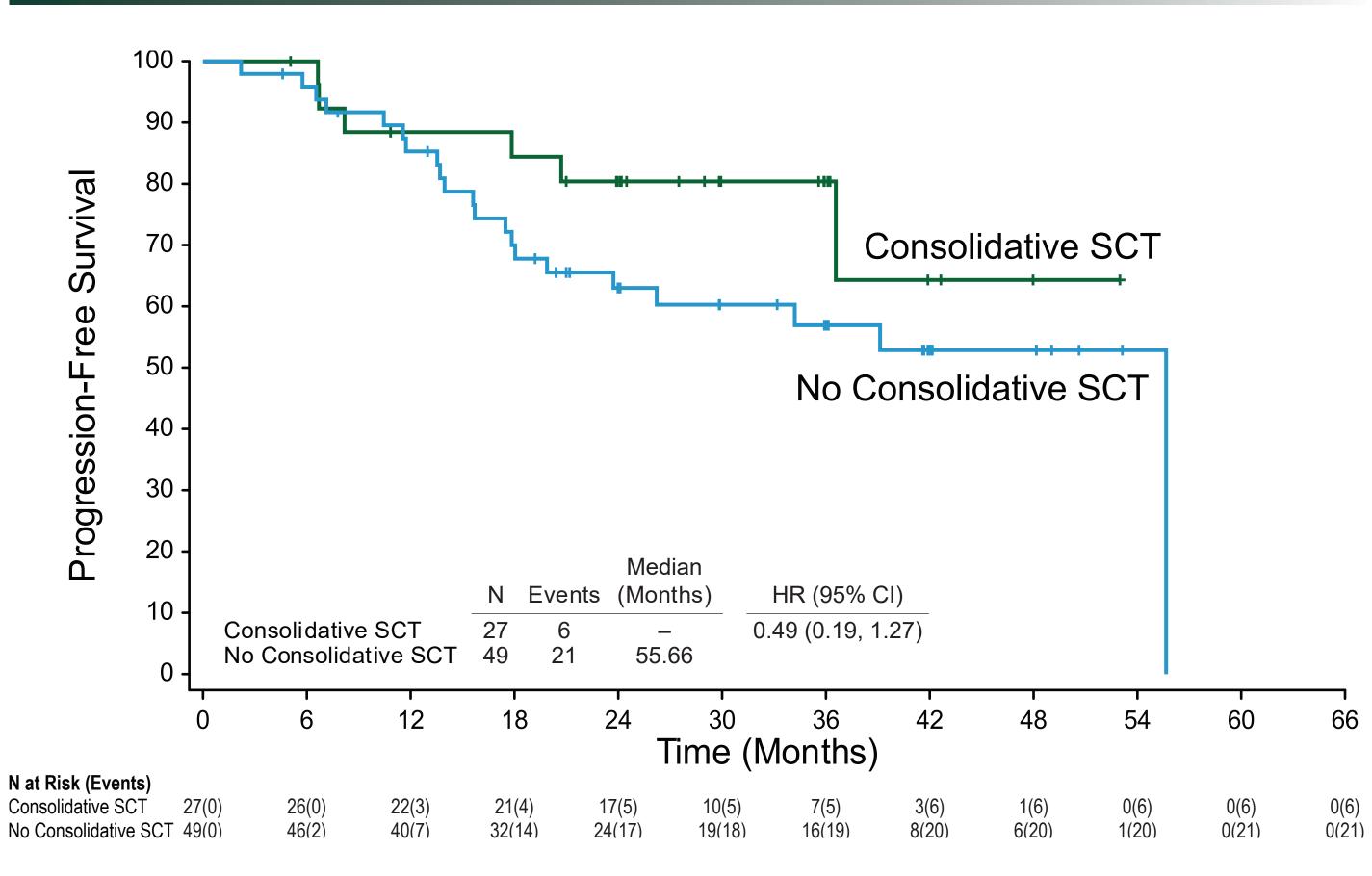
PFS by Consolidative SCT After A+CHP in Patients with CR at EOT: ALK– sALCL and Non-sALCL


No	9 (90)	40 (61)	8 (89)	19 (66)

Asia = Taiwan, South Korea, Japan; Non-Asia = rest of world. a One patient had no response recorded for intention to transplant at baseline

Summary of PFS by Consolidative SCT After A+CHP in Patients with CR at EOT

	ALK– sALCL N=76		Non-sALCL N=38		Combined N=144	
	SCT (n=27)	No SCT (n=49)	SCT (n=11)	No SCT (n=27)	SCT (n=38)ª	No SCT (n=76)
Estimated PFS at 3 years, % (95% CI)	80.4 (59.1, 91.4)	56.9 (40.6, 70.3)	70.1 (32.3, 89.5)	46.7 (26.7, 64.4)	76.1 (56.9, 87.6)	53.3 (40.7, 64.3)
Univariate, HR (95% CI)	0.49 (0.1	19, 1.27)	0.36 (0.1	10, 1.26)	0.38 (0.2	18, 0.82)
Multivariate, HR (95% CI) adjusted for:						
Age (<65, ≥65)	0.54 (0.2	20, 1.45)	0.32 (0.0	09, 1.15)	0.39 (0.1	18, 0.86)
Region (ROW, Asia)	0.47 (0.1	18, 1.22)	0.37 (0.1	10, 1.33)	0.38 (0.1	18, 0.82)
Age + Region	0.52 (0.1	19, 1.41)	0.32 (0.0	09, 1.19)	0.39 (0.1	18, 0.86)
Median follow- up, months	29.9 (24.2, 36.1)	41.6 (29.8, 42.0)	49.8 (21.2, 54.0)	42.6 (29.5, 53.9)	35.9 (24.5, 41.9)	41.6 (33.2, 42.1)


ECHELON-2 Study Design (NCT01777152)

Methods

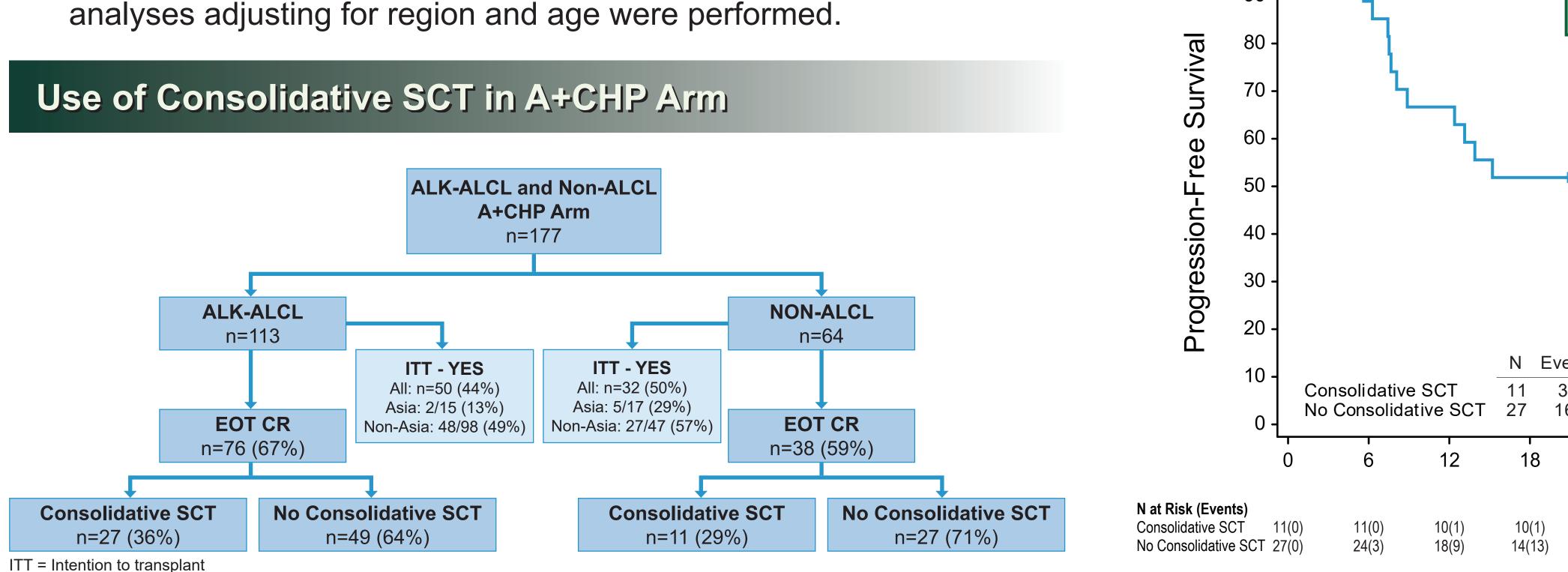
- CR rate at EOT by blinded independent central review as defined per the Revised Response Criteria for Malignant Lymphoma.³
- Patients who discontinued treatment due to an adverse event were included in the analysis if they were in a CR at EOT.
- Patients with ALK+ sALCL histological subtype tend to have more

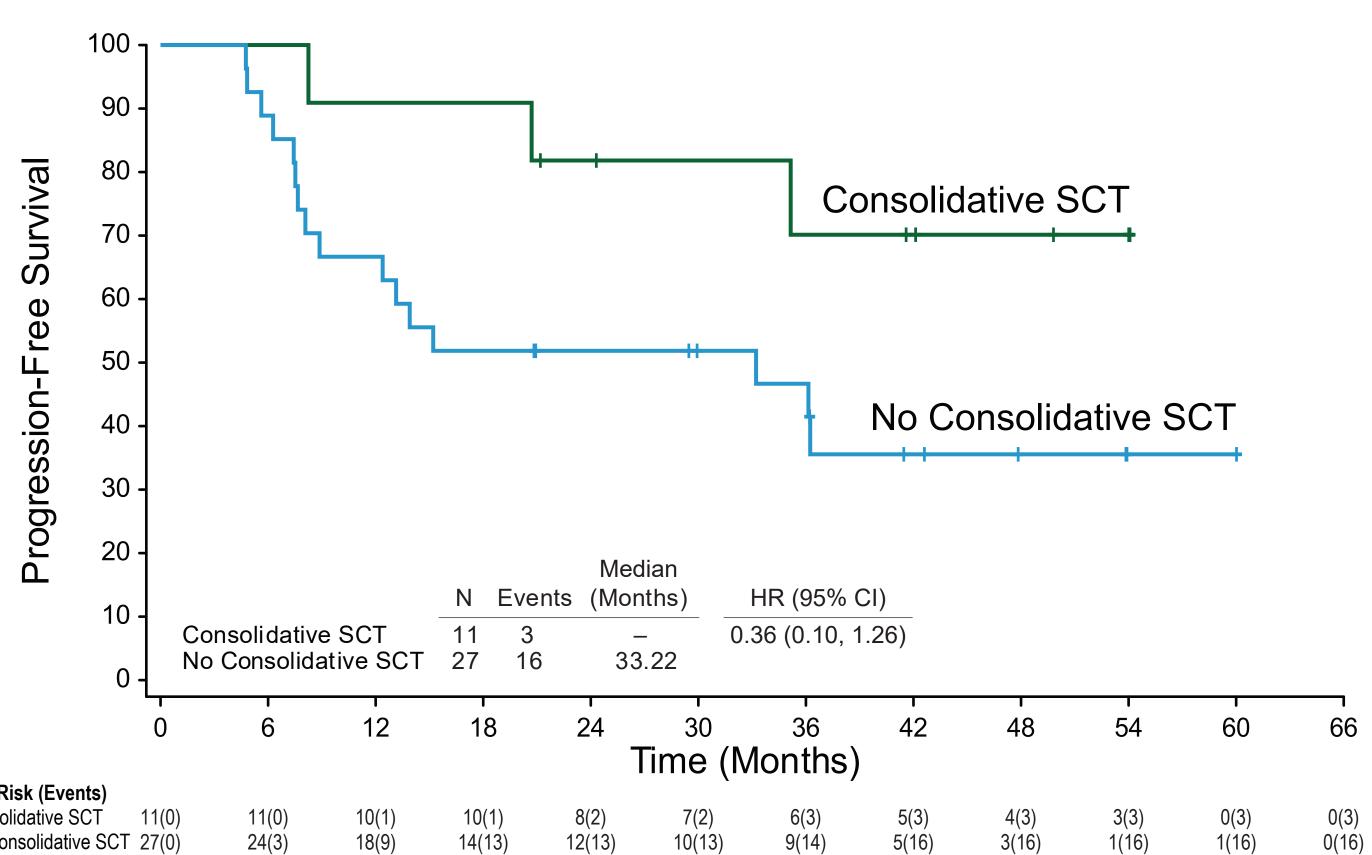
PFS by Consolidative SCT After A+CHP in Patients with CR at EOT: ALK– sALCL

PFS by Consolidative SCT After A+CHP in Patients with CR at EOT: Non-sALCL

(95% CI)

Table presents HR of PFS for patients who achieved CR on A+CHP, SCT vs no SCT; HR<1 favors SCT; all HRs were stratified for baseline IPI score (0-1, 2-3, 4-5). a Includes 2 allogeneic SCTs


Limitations


- This exploratory subgroup analysis was post-hoc, which may introduce unknown bias.
- Comparisons by SCT may be confounded, as SCT is a nonrandomized, post-baseline outcome.
- The study was not powered to make a definitive assessment of the use of SCT in patients with PTCL.
- The sample sizes were small.

Conclusions

- Numerical PFS estimates favor the use of consolidative SCT in patients with PTCL in a CR at EOT after frontline A+CHP treatment.
- The use of consolidative SCT was infrequent in Asian countries, suggesting regional practice differences.
- The overall impact of consolidative SCT remains unconfirmed, including in patients treated with A+CHP.

favorable outcomes and therefore were excluded from this analysis. • Both a univariate analysis of SCT versus no SCT and multivariate

• Additional studies are needed to establish the role of consolidative SCT in this setting.

Acknowledgments

References

• The authors thank the patients who participated in this study, their families, and the caregivers.

1. Horwitz S, et al. Lancet 2019; 393: 229-40. 2. D'Amore F, et al. Haematologica 2009; 94(suppl 2):437. 3. Cheson BD, et al. J Clin Oncol 2007; 25: 579-86

Study funded by Seattle Genetics, Inc. and Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited. This research was funded in part through the National Institutes of Health/National Cancer Institute Cancer Center Support Grant P30 CA008748.

Copies of this poster obtained through Quick Response (QR) code are for personal use only and may not be reproduced without permission from the author of this poster

12th T-Cell Lymphoma Forum La Jolla, CA; January 30 to February 1, 2020